Applications of Differential Calculus to Nonlinear Elliptic Boundary Value Problems with Discontinuous Coefficients
نویسندگان
چکیده
We deal with Dirichlet’s problem for second order quasilinear non-divergence form elliptic equations with discontinuous coefficients. First we state suitable structure, growth, and regularity conditions ensuring solvability of the problem under consideration. Then we fix a solution u0 such that the linearized in u0 problem is non-degenerate, and we apply the Implicit Function Theorem: For all small perturbations of the coefficient functions there exists exactly one solution u ≈ u0, and u depends smoothly (in W 2,p with p larger than the space dimension) on the data. For that no structure and growth conditions are needed, and the perturbations of the coefficient functions can be general L∞-functions with respect to the space variable x. Moreover we show that the Newton Iteration Procedure can be applied to calculate a sequence of approximate (in W 2,p again) solutions for u0.
منابع مشابه
On boundary value problems of higher order abstract fractional integro-differential equations
The aim of this paper is to establish the existence of solutions of boundary value problems of nonlinear fractional integro-differential equations involving Caputo fractional derivative by using the techniques such as fractional calculus, H"{o}lder inequality, Krasnoselskii's fixed point theorem and nonlinear alternative of Leray-Schauder type. Examples are exhibited to illustrate the main resu...
متن کاملBifurcation in a variational problem on a surface with a constraint
We describe a variational problem on a surface under a constraintof geometrical character. Necessary and sufficient conditions for the existence ofbifurcation points are provided. In local coordinates the problem corresponds toa quasilinear elliptic boundary value problem. The problem can be consideredas a physical model for several applications referring to continuum medium andmembranes.
متن کاملExistence solutions for new p-Laplacian fractional boundary value problem with impulsive effects
Fractional differential equations have been of great interest recently. This is because of both the intensive development of the theory of fractional calculus itself and the applications of such constructions in various scientific fields such as physics, mechanics, chemistry, engineering, etc. Differential equations with impulsive effects arising from the real world describe the dyn...
متن کاملFree and constrained equilibrium states in a variational problem on a surface
We study the equilibrium states for an energy functional with a parametric force field on a region of a surface. Consideration of free equilibrium states is based on Lyusternik - Schnirelman's and Skrypnik's variational methods. Consideration of equilibrium states under a constraint of geometrical character is based on an analog of Skrypnik's method, described in [P. Vyridis, {it Bifurcation in...
متن کاملChebyshev finite difference method for a two−point boundary value problems with applications to chemical reactor theory
In this paper, a Chebyshev finite difference method has been proposed in order to solve nonlinear two-point boundary value problems for second order nonlinear differential equations. A problem arising from chemical reactor theory is then considered. The approach consists of reducing the problem to a set of algebraic equations. This method can be regarded as a non-uniform finite difference schem...
متن کامل